Что такое баллистическая постоянная гальванометра. Определение баллистической постоянной гальванометра


Лабораторная работа №16

ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА С ПОМОЩЬЮ БАЛЛИСТИЧЕСКОГО ГАЛЬВАНОМЕТРА

Цель работы

    Освоить метод баллистического гальванометра.

    Определить емкость отдельных конденсаторов и их соединений в батарею.

    Проверить справедливость теоретических формул для расчета емкости батареи конденсаторов при их последовательном и параллельном соединениях.

Теоретическое введение

Конденсатор – это два проводника, разделенные слоем диэлектрика, имеющие заряды, равные по величине и противоположные по знаку, и расположенные так, что поле, создаваемое зарядами на проводниках, сосредоточено преимущественно в пространстве, защищенном самими проводниками от внешних электрических полей. Проводники, образующие конденсатор, называются его обкладками.

Емкость конденсатора определяется формулой:

где q - заряд конденсатора, равный модулю заряда одной из обкладок; Δφ - разность потенциалов между обкладками.

Емкость конденсатора - это физическая величина, численно равная заряду, который нужно перенести с одной обкладки на другую, для того, чтобы разность потенциалов между ними изменилась на единицу.

Емкость конденсатора не зависит от заряда на его обкладках, разности потенциалов между ними, а также от расположения окружающих тел. Она определяется формой конденсатора (сферический, цилиндрический, плоский), геометрическими размерами и наличием диэлектрика между обкладками.

Емкость плоского конденсатора прямо пропорциональна площади его обкладок S , диэлектрической проницаемости среды ε , обратно пропорциональна расстоянию d между обкладками:

, (2)

где ε 0 - электрическая постоянная (ε 0 = 8,85 ∙ 10 -12 Ф/м).

Емкость измеряется в фарадах (Ф): 1Ф = 1Кл/В, а также в микрофарадах 1мкФ = 10 -6 Ф, в пикофарадах 1пФ = 10 -12 Ф.

Для получения необходимой емкости конденсаторы соединяют последовательно и параллельно в батареи.

При последовательном соединении (рис.1) заряд на всех конденсаторах одинаков, а разность потенциалов на батарее Δφ AB равна сумме разностей потенциалов на каждом конденсаторе: Δφ AB = Δφ 1 + Δφ 2 +…+ Δφ n .

Выразив значения разности потенциалов через заряд и емкости конденсаторов, получаем:

, или
, (3)

где C - емкость батареи; С 1 , С 2 , …, С n – емкости отдельных конденсаторов.

При параллельном соединении (рис. 2) разность потенциалов на конденсаторах одинакова Δφ AB = Δφ 1 =Δφ 2 =…= Δφ n , а полный заряд батареи равен сумме зарядов на каждом конденсаторе q = q 1 + q 2 + … + q n .

Выразив значения зарядов через емкости и разности потенциалов, получаем:

С Δφ = С 1 Δφ +С 2 Δφ +…+С n Δφ ,

или С = С 1 + С 2 + … + С n , (4)

где С – емкость батареи; С 1 , С 2 , …, С n – емкости отдельных конденсаторов.

В данной работе для измерения емкостей отдельных конденсаторов и их соединений применяется баллистический гальванометр.

Гальванометрыпредназначаются для работы в качестве измерителей, показывающих наличие или отсутствие тока (в компенсационных схемах), и в качестве приборов для измерения силы тока, напряжения, количества электричества и т. д.

Баллистический гальванометр- это высокочувствительный прибор магнитоэлектрической системы с повышенным моментом инерции подвижной части.

Баллистический гальванометр оформлен в литом металлическом корпусе и установлен в вертикальной плоскости на стене вместе с осветительным и отсчетным устройством (рис. 3), т.е. лампой и шкалой, отстоящими от металлического корпуса на расстояние 1,50 м. Шкала из матового стекла расположена параллельно стене (рис. 4).

Рис.4. Внешний вид осветителя с отсчетным устройством типа П31, скомплектованного для отсчета в вертикальной плоскости (шкала параллельна стене).

Рис.3. Схема вертикальной установки гальванометра

Принцип действия прибора основан на взаимодействии магнитного поля, создаваемого постоянным магнитом, с током, протекающим по обмотке рамки. В результате взаимодействия возникает вращающий момент, поворачивающий рамку с током, на которой укреплено облегченное алюминиевое зеркало. Максимальный угол поворота рамки прямо пропорционален электрическому заряду, протекшему через нее.

Отсчет угла поворота рамки производится с помощью светового указателя. На зеркало рамки падает луч света от осветителя, а отраженный от зеркала луч падает на шкалу.

Величина максимального смещения светового луча по шкале отсчетного устройства является мерой измеряемой величины (нуль шкалы находится в ее середине).

Название "баллистический" означает, что при измерении отсчитывается так называемый баллистический отброс (максимальное отклонение), после которого подвижная часть постепенно возвращается в нулевое положение.

В данной работе баллистический гальванометр применяется для измерения емкости конденсатора, поэтому его необходимо предварительно проградуировать, т. е. определить его баллистическую постоянную К б:

, (5)

где q – заряд, протекший через рамку; n – максимальное отклонение светового луча по шкале.

Баллистическая постоянная показывает, какой заряд (в кулонах) протекает через рамку при смещении светового “зайчика” на одно деление шкалы (при заданном расстоянии между шкалой и зеркалом рамки).

При прохождении заряда q через рамку баллистического гальванометра за время, значительно меньшее периода ее собственных колебаний, световой “зайчик” сместится по шкале на n делений. Заряд, прошедший через рамку баллистического гальванометра при этом пропорционален величине n .

q = К б n , (6)

Для определения заряда q применяют эталонный конденсатор известной емкости С эт, который при напряжении U накапливает заряд q :

q = C эт U , (7)

Следовательно, баллистическую постоянную К б можно определить по формуле:

, (8)

Если баллистическая постоянная известна, то с помощью баллистического гальванометра определяют емкости отдельных конденсаторов и емкости батареи при их последовательном и параллельном соединении по формуле:

, (9)

где U – напряжение на обкладках конденсатора; n – смещение светового “зайчика” по шкале.

Описание установки и метода

Для определения баллистической постоянной К б и емкости конденсатора С х собирают цепь по схеме (рис. 5). Здесь PA – баллистический гальванометр; C – эталонный или исследуемый конденсатор; PU – вольтметр; GB – источник постоянного напряжения; S – переключатель.

Если переключатель S установить в верхнее по схеме положение, то конденсатор заряжается, а если в нижнее - то конденсатор разряжается через гальванометр; при этом световой луч (“зайчик”) отклоняется по зеркальной шкале. В качестве результата измерения надо брать первое наибольшее отклонение “зайчика”.

Порядок выполнения работы и обработка результатов измерения

Задание 1. Определение баллистической постоянной гальванометра.

    Соберите цепь по схеме (рис. 5).

    Подсоедините эталонный конденсатор С эт, емкость которого указана на установке.

    Включите осветитель гальванометра в сеть.

    Определите начальное положение n 0 риски на шкале. Отсчет величины отклонения светового "зайчика" производите относительно этого деления.

    Установите по вольтметру PU напряжение по указанию преподавателя.

    Подключите конденсатор к источнику питания (ручку переключателя S на стенде установите в левое положение) и через 2 - 3 секунды разрядите его на гальванометр (ручку переключателя S установите в правое положение) одновременно отмечая максимальное деление шкалы n, до которого отклонится световой “зайчик”.

    Повторите аналогичные измерения по пятому пункту не менее трех раз для различных значений напряжений U , заданных преподавателем.

    По полученным данным, пользуясь формулой (8), определите К б.

    Результаты измерений и расчетов занесите в таблицу 1.

Таблица 1

n 1 , мм

n 2 , мм

n 3 , мм

<n >, мм

К б, Кл/мм

<К б >,

Δ К б,

,

где ΔU = 0,1 В; Δn = 5 мм; Δ С эт – указана на установке.

10.Ответ представьте в виде: К б = <К б > ± Δ К б.

Задание 2 . Определение емкости конденсаторов

    Включите в собранную схему конденсатор измеряемой емкости C x в /Включите в собранную схему конденсатор измеряемой ёмкости С х вместо С эт.

    Включите осветитель гальванометра.

    Установите по вольтметру PU напряжение U, заданное преподавателем.

    Подключите конденсатор к источнику тока и через 2-3 секунды разрядите его через гальванометр, одновременно отмечая максимальное деление (n ) шкалы, до которого отклонится световой “зайчик “.

    Повторите аналогичные измерения не менее 3-х раз для различных значений напряжения U (по указанию преподавателя).

    По полученным данным, пользуясь формулой (9), определите C x (<K б > взять из таблицы 1).

    Тем же методом определите емкость других конденсаторов (C y или C z по указанию преподавателя).

Задание 3. Определить емкости батарей из двух конденсаторов.

      Соедините конденсаторы C x и C y (или C x и C z) последовательно в батарею (рис.1).

      Методом, приведенным в задании 2, определите емкости C xy (или C xz) батареи при последовательном соединении.

      Соедините те же конденсаторы параллельно в батарею.

      Определите емкость C xy (или C xz) батареи при параллельном соединении.

      Результаты измерений и расчетов занесите в таблицу 2.

Таблица 2

Конденсатор неизвестной емкости

n 1 , мм

n 2 , мм

n 3 , мм

<n >, мм

<C >, Ф

Δ С , Ф

C y (или C z)

Батарея C xy (C xz) последовательно

Батарея C xy (C xz) параллельно

.

      Результаты расчетов представьте в виде:

C x = <C x > ± Δ C x и т. д.

      Сравните результаты опытов при последовательном и параллельном соединении конденсаторов с результатами вычисления емкости батарей по теоретическим формулам (3) и (4).

10. Оформите вывод по анализу опытных и расчетных данных, занесенных в таблицы. В выводе отразить следующие положения:

        зависит ли баллистическая постоянная K б от напряжения на эталонном конденсаторе и его емкости C эт?

        как увеличение напряжения на конденсаторе влияет на отброс светового луча по шкале и почему?

        зависят ли емкости C x , C y , C xy (послед.), C xy (паралл.) от напряжений на них?

        как согласуются значения экспериментально полученных емкостей батарей конденсаторов при последовательном и параллельном соединениях с результатами вычисления по формулам?

Контрольные вопросы

    Каков принцип действия баллистического гальванометра?

    Каков физический смысл баллистической постоянной?

    Что называется емкостью уединенного проводника? Конденсатора?

    Что называется взаимной емкостью двух проводников?

    Чем отличается емкость конденсатора от емкости уединенного проводника?

    Выведите формулу емкости батареи конденсаторов при последовательном и параллельном соединениях.

    В каких случаях следует применять тот или иной способ соединения конденсаторов в батарею?

    Объясните метод определения емкости с помощью баллистического гальванометра.

    Трофимова Т.И.: Курс физики, М.: Высшая шк., 2003. - §§ 93, 94.

    Детлаф А.А., Яворский Б.М. Курс физики, М.:, Высшая шк., 1999. –

    Савельев И.В. Курс физики: том 2, М.: Наука, 1988 - §§ 26, 27.

    Грабовский Р.И. Курс физики, М.: Высшая шк., 1980. Часть 2 - §§ 7, 10.

1. Включить освещение шкалы гальванометра. Установить нуль шкалы.

2. С помощью ключа К 1 включить ток в цепи с нормальным соленоидом. При помощи реостата R установить силу тока 0,1 ампера. Включить ток в цепи с нормальным соленоидом.

3. Замкнуть ключ К 2 в цепи с баллистическим соленоидом.

4. Замкнуть ключ К 1 в цепи с нормальным соленоидом и замерить отброс «зайчика» (шкалы) α . После возвращения шкалы гальванометра в нулевое положение, разомкнуть ключ К 2 и вновь отметить отброс шкалы гальванометра. Измерения повторить 2-3 раза. Из всех полученных данных вычислить среднюю величину отброса.

5. Пользуясь формулой (22), определить постоянную баллистического гальванометра для каждого измерения α. Из всех полученных значений вычислить среднее значение постоянной баллистического гальванометра.

Результаты работы занести в таблицу 1.

ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ

НАПРЯЖЕННОСТИ МАГНИТНОГО ПОЛЯ

6. Совместить плоскости обоих колец (А и В) земного индуктора и по компасу установить индуктор так, чтобы плоскости обоих колец были перпендикулярны плоскости магнитного меридиана.

7. При включенном токе в первичном соленоиде быстро повернуть за головку С весь индуктор на 180 о, заметив при этом отброс «зайчика» (шкалы) β. Этот отсчет проделать 2-3 раза. Из всех полученных отбросов «зайчика» (шкалы) вычислить среднее значение величины β.

8. Пользуясь формулой (28) и (30), вычислить значение горизонтальной напряженности магнитного поля ЗемлиН В .

Результаты работы занести в таблицу 2.

ОПРЕДЕЛЕНИЕ ВЕРТИКАЛЬНОЙ СОСТАВЛЯЮЩЕЙ

НАПРЯЖЕННОСТИ МАГНИТНОГО ПОЛЯ

9. Совместить плоскости колец (А и В) земного индуктора и по компасу установить индуктор так, чтобы плоскости обоих колец были параллельны плоскости магнитного меридиана.

10. При включенном токе в первичном соленоиде быстро повернуть за головку Е – кольцо В на 90 о, заметив при этом величину отброса «зайчика» (шкалы) γ. Опыт проделать 2-3 раза. Из величин всех полученных отбросов вычислить среднее значение величины γ.

11. Пользуясь формулой (16), вычислить значение вертикальной составляющей напряженности магнитного поля Земли Н В.

12. Пользуясь формулой (1), вычислить полное значение напряженности магнитного поля Земли Н.

Результаты работы занести в таблицу 3.

Таблица 1

Определение постоянной баллистического гальванометра

Таблица 3

Определение вертикальной составляющей напряженности поля земного

магнетизма.

№ опыта γ Среднее значение γ Н В
1. 2. 3. 4. 5.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Магнитное поле. Вектор магнитной индукции.

2. Закон Био – Савара- Лапласа и его применение для расчета магнитных полей.

3. Закон Ампера. Право левой руки.

4. Работа магнитного поля по перемещению проводника (контура) с током.

5. Явление электромагнитной индукции. Закон Фарадея и его вывод из закона сохранения энергии. Правило Ленца.

Работа № 7

ГРАДУИРОВКА ТЕРМОПАРЫ

1. Цель работы :Ознакомиться термоэлектрическими явлениями и провести градуировку термопары.

Теоретическая часть

В 1797 году Вольт открыл, что при соприкосновении двух различных металлов возникает некоторая разность потенциалов, называемая контактной разностью потенциалов. Причинами, вызывающими появление контактной разности потенциалов, являются следующие обстоятельства.

1. Различная работа выхода свободных электронов из различных металлов. Дело в том, что при обычных температурах электроны, совершая тепловое движение, не вырываются из металла; от вырывания из металла электроны удерживает как взаимодействие их с положительными зарядами остова кристаллической решетки, так и отталкивание внутрь металла со стороны тех электронов, которые ранее достигли поверхности металла. В результате, для выхода электрона из металла необходимо затратить вполне определенную, различную для разных металлов работу. При тесном контакте чистых поверхностей различных металлов работа выхода электронов за пределы своего металла несколько облегчается, но для разных металлов все же остается различной.



Работа по перемещению электрического заряда в электрическом поле численно равна произведению перемещаемого электрического заряда на разность потенциалов тех точек поля, между которыми происходит перемещение заряда.

А = e(V − V 0),

где V − потенциал электрического поля внутри металла; а V 0 − потенциал электрического поля вне металла. Практически потенциал вне металла равен нулю (V 0 =0), и формула работы по выходу электрона из металла принимает вид

Тогда потенциал, который должен преодолеть электрон для выхода из металла(потенциал выхода) будет равен

Таким образом, потенциал выхода численно равен работе, которую должен совершить электрон для того, чтобы выйти из данного металла. Пусть, например, при контакте двух металлов А и В работа выхода электронов из металла А будет меньше, чем работа выхода электронов из металла В. В этом случае потенциал выхода из металла А(V А) будет меньше потенциала выхода из металла В (V В), и между металлами возникает контактная разность потенциалов.

, (1)

причем металл А зарядится положительно, а металл В – отрицательно.

2. Различная концентрация свободных электронов в контактирующих металлах. Различные металлы отличаются своей структурой, а это влечет за собой и различное содержание свободных электронов в единице объема. Допустим, что концентрация свободных электронов в металле А больше, чем в металле В, т.е n 0А >n 0В.

Вполне естественно, что из металла А будет по этой причине больше выходить электронов, чем из металла В; в результате между металлами А и В возникает разность потенциалов, причем металл А зарядится положительно, а металл В – отрицательно. Эта контактная разность потенциалов определяется формулой

, (2)

где κ − постоянная Больцмана;

Т – абсолютная температура места контакта.;

е – заряд электрона;

n 0А, n 0В – концентрация свободных электронов в металлах А и В.

Таким образом, учитывая оба обстоятельства, вызывающие возникновение контактной разности потенциалов, можно написать:

(3)

Следует при этом отметить, что эта электродвижущая сила будет наблюдаться лишь на концах разомкнутой цепи. В том случае, если последовательно соединенные различные металлы будут образовывать замкнутую цепь, то сумма контактных разностей потенциалов этих металлов будет равна нулю, так как контактные разности потенциалов на обоих контактах будут равны по величине и противоположны по знаку. Однако так будет обстоять дело лишь в том случае, если температура обоих контактов различных металлов одинакова. При разной температуре контактов в замкнутой цепи возникает электродвижущая сила, отличная от нуля; эта электродвижущая сила носит название термоэлектродвижущей силы. Допустим, что в замкнутой цепи, составленной из двух металлов А и В, контакт (1) поддерживается при температуре Т 1 , а контакт(23) при температуре Т 2 (рис1)

Потенциалы выхода V А и V В и концентрация свободных электронов n 0А и n 0В, вообще говоря, от температуры не зависят. Суммарная электродвижущая сила, возникающая в замкнутом контуре, может быть написана так:

Приведя подобные члены и переставив во втором логарифме числитель и знаменатель дроби, будем иметь:

(4)

Формула показывает, что электродвижущая сила, возникшая в замкнутом контуре при разной температуре контактов различных металлов прямопропорциональна разности температур этих контактов.

Поскольку величины К, е, n 0А и n 0В являются постоянными, формула может быть преобразована в виде:

Е = с (Т 1 -Т 2) , (5)

численно равна ЭДС, возникающая при изменении температуры контакта на 1 о С. Хотя величина термоэлектродвижущей силы и невелика (несколько стотысячных долей вольта на 1 о), термоэлектрические явления находят широкое применение как для измерения высоких температур, так и для обнаружения весьма слабых нагреваний. Для этого используются так называемые термоэлементы или термопары, которые представляют собой две проволоки из различных металлов с известной и заранее точно промеренной термоэлектродвижущей силой. В месте контакта проволоки свариваются. Один контакт помещается в среду с определенной постоянной температурой (Т о), а другой в среду, где изменяется температура (Т). Возникающая ЭДС измеряется при помощи вольтметра; по измеренной ЭДС определяется разность температур (Т –Т о); поскольку Т о заранее известна, находится и температура Т.

Экспериментальная часть

ОПИСАНИЕ ПРИБОРА

Целью настоящей работы является градуировка термопары, т.е. установление зависимости термоэлектродвижущей силы от температуры (формула 4 и 5).

Установка лабораторной работы состоит из следующих приборов: 1) термопара, 2)аккумулятор, 3) вольтметр, 4)гальванометр, 5) потенциометр, состоящий из двух магазинов сопротивления, 6) реохорд, 7) ключ, 8)сосуд Дюара, 9) электроплитка, 10) термометр.

ВЫПОЛНЕНИЕ РАБОТЫ

1. Собрать электрическую цепь по приложенной схеме (рис.2)

При этом необходимо иметь ввиду, что: а) положительный полюс аккумулятора (+Е 0) и положительный полюс термобатарей (+Т.Б) должны быть присоединены к одной и той же клемме реохорда (удобнее к той, около которой стоит нуль линейки), б) r 1 – потенциометр с сопротивлением 240 Ом, r – потенциометр с сопротивлением 240 Ом, r 2 – реохорд с сопротивлением 7 Ом, в) отрицательный полюс термобатареи (-ТБ) через гальванометр должен быть подключен к подвижному контакту Р реохорда, г) левый спай термоэлемента опустить в сосуд Дюара, а правый – в стакан с холодной водой, поставленный на невключенную холодную электроплитку. В этот же стакан должен быть опущен термометр.

2. После проверки собранной цепи преподавателем поставить подвижной контакт Р реохорда на нулевое положение и включить рубильник К. Стрелка гальванометра должна стоять на нуле (в противном случае обратиться к преподавателю).

3. Записать показание термометра, включить электроплитку и наблюдать за изменением температуры.

4. Через каждые 5 о нагрева: а) записать температуру, б) плавно, перемещая подвижной контакт Р, устанавливать стрелку гальванометра на нуль, в) записывать длину плеча реохорда от точки А до подвижного контакта Р.

5. Все эти измерения производить до температуры кипения воды или в случае до перемещения подвижного контакта реохорда до точки В.

6. Все измерения занести в 1,2,3,4 графы таблицы.

7. Для того чтобы вычислить ЭДС термобатареи (Е), а также величину С (термоэлектродвижущую силу, возникающую при изменении температуры нагреваемого спая на 1 о), необходимо произвести некоторые теоретические расчеты и вычисления. Дело в том, что при том положении подвижного контакта Р, при котором стрелка гальванометра q будет стоять на нуле(ток отсутствует), термоэлектродвижущая сила будет в точности равна падению напряжения на участке реохорда от точки А до подвижного контакта Р. Поэтому прежде всего необходимо знать, каково падение напряжения на всем реохорде АВ, создаваемое аккумулятором Е о. Обозначим (см.рис.2) ток на потенциометре r 1 через i 1 . на потенциометре r - через i и на реохорде r 2 через i 2 ; тогда, пользуясь первым законом Кирхгофа, можно написать для точки Д:

по второму закону Кирхгофа получается (для контура Е о Д Е о)

i 1 r 1 + i r = V (7)

Так как потенциометр r 1 и реохорд r 2 включены в цепь параллельно друг другу, то

i 1 r 1 = i 2 r 2 (8)

Подставим в уравнение (7) вместо i его значение из уравнения (6).

i 1 r 1 + i 1 r+ i 2 r = V (9)

В уравнении (9) заменим i 1 r 1 через равную величину из равенства (8)

(10)

В последнем выражении вынести за скобку i 2 r 2

(11)

Так как i 2 r 2 = i 1 r 1, то выражение (11) может быть записано так:

(12)

i 2 r 2 – есть искомое напряжение на всем реохорде, создаваемое источником тока.

8. После того, как будет вычислено падение напряжения на всем реохорде, можно приступить к вычислению термоэлектродвижущей силы для каждой замеренной температуры (см.п.4 в разделе «Выполнение работы»). Порядок вычисления следующий: обозначим число всех делений реохорда через N; допустим, что для какого-нибудь наблюдения подвижной контакт остановился на n –ом делении реохорда и стрелка гальванометра стоит на нуле.

Если при положении подвижного контакта Р на n –Ом делении реохорда стрелка гальванометра стоит на нуле- это означает, что термоэлектродвижущая сила, возникшая при данной температуре, компенсирует лишь ту часть напряжения на реохорде, которая приходится на часть реохорда, соответствующую n его делений (Е ФБ = V АР).

Составим пропорцию:

На N делений реохорда приходится i 2 r 2 вольт (см.форм.12), а на n делений придется х вольт.

Это напряжение х и есть электродвижущая сила (Е). которая возникла в термобатарее при некоторой зафиксированной температуре.

Все эти расчеты термоэлектродвижущей силы занести в таблицу.

9. Вычислить для каждого номера наблюдения значение постоянной «с» по формуле (5).

10. Построить график зависимости термоэлектродвижущей силы от температуры, откладывая по оси абсцисс значение разности температур (t а - t в), а по оси ординат значение термоэлектродвижущей силы Е.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Цель и производство работы

2. Понятие о контактной разности потенциалов. Законы Вольты.

3. Термоэлектричество. ТермоЭДС и её применение в сельском хозяйстве.

4. Градуировка термопары.

Существуют различные методы измерения емкости: метод амперметра-вольтметра, мостовой метод, метод баллистического гальванометра, по времени разряда конденсатора через резистор известного сопротивления, резонансный метод и др. Рассмотрим их более подробно.

Одним из наиболее простых является метод амперметра-вольтметра. Он основан на измерении емкостного сопротивления конденсатора, которое обратно пропорционально емкости и частоте электрического тока: ,

Следовательно, для измерения емкости этим методом необходимо знать частоту напряжения, подаваемого от источника питания.

Баллистическими называют чувствительные гальванометры, у которых период собственных колебаний рамки очень большой. В баллистическом режиме может работать любой прибор магнитоэлектрической системы, если ток в цепи прибора протекает в течение времени, во много раз меньшего периода собственных колебаний его подвижной рамки. При разряде конденсатора через баллистический гальванометр отброс стрелки гальванометра пропорционален протекающему через него заряду. Проведем следующий эксперимент. Зарядим конденсатор до напряжения U и, разрядив его через гальванометр, заметим величину отброса стрелки. Повторим опыт, увеличивая напряжение в 2, 3 и т.д. раз. Каждый раз отношение напряжения к числу делений, на которые отклонялась стрелка, будет величиной постоянной. Затем, не изменяя напряжения, проведем эксперимент с конденсаторами емкостью C, 2С, 3С и т.д. Обнаружим, что отношение емкости конденсатора к числу делений, на которые отклонилась стрелка, тоже величина постоянная.

Баллистическая постоянная гальванометра - это отношение заряда q, протекшего через рамку гальванометра, к числу делений n, на которое отклонилась стрелка: k = q/n. Для определения баллистической постоянной несколько раз проводят опыт с конденсаторами известной емкости. Заряд конденсатора рассчитывается по формуле q = CU, где q - заряд на одной из обкладок конденсатора, C - емкость конденсатора, а U - напряжение между обкладками конденсатора. Тогда k = CU/n. Из нескольких опытов при различных напряжениях между обкладками конденсатора и различных значениях емкости определяют среднее значение баллистической постоянной гальванометра.

Затем включают в цепь конденсатор неизвестной емкости и повторяют опыт. Зная баллистическую постоянную и число делений, на которое отклонилась стрелка гальванометра, определяют емкость: Cx = kn/U.

Для измерения емкости можно использовать любой прибор магнитоэлектрической системы при условии, что произведение емкости конденсатора на внутреннее сопротивление прибора будет значительно меньше периода собственных колебаний стрелки прибора. В этом случае конденсатор полностью разряжается за время, много меньшее периода собственных колебаний, и изменение сопротивления резистора, включенного последовательно с гальванометром, никак не влияет на отброс стрелки гальванометра.


ЛАБОРАТОРНАЯ РАБОТА № 2

ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА БАЛЛИСТИЧЕСКИМ ГАЛЬВАНОМЕТРОМ

1. Введение

Цель работы – ознакомление с баллистическим методом определения емкости конденсатора. Работа состоит из двух частей. В первой части находят величину баллистической постоянной гальванометра, во второй – определяют емкости двух конденсаторов и емкости этих конденсаторов, соединенных. параллельно и последовательно.

Емкость конденсатора равна отношению заряда q на конденсаторе к разности потенциалов между его обкладками

https://pandia.ru/text/78/409/images/image003_10.png" width="81" height="23 src=">. (2)

При последовательном соединении

Заряд конденсатора измеряют с помощью баллистического гальванометра. Баллистический метод является одним из приемов не только электрических, но и магнитных измерений. Баллистический гальванометр относится к приборам магнито-электрической системы, схематичное устройство которых показано на рис. 1. Между полюсами постоянного магнита NS для создания -радиального магнитного поля помещен стальной цилиндр В . Цилиндр закреплен неподвижно. В зазоре между полюсами магнита и цилиндром может свободно вращаться рамка К с обмоткой из тонкой проволоки, подвешенная на металлической или кварцевой нити М . Для отсчета углов поворота рамки служит зеркальце А , на которое падает световой луч от осветительного устройства. Баллистический гальванометр служит для измерения заряда, длительность t протекания которого по цепи мала по сравнению с периодом Т собственных колебаний рамки. Баллистический гальванометр отличается от обычных зеркальных гальванометров увеличенным значением момента инерции I его подвижной системы. Если через гальванометр пропустить кратковременный импульс тока (t<<T ), то на рамку в каждый момент времени действует вращающий момент, обусловленный взаимодействием тока i с магнитным полем: https://pandia.ru/text/78/409/images/image007_6.png" width="37" height="45">. Так как ток к этому моменту прекратился, то рамка начинает поворачиваться по инерции с начальной скоростью w0 и закручивает нить. В момент остановки рамки вся кинетическая энергия переходит в потенциальную энергию закрученной нити , где D - постоянная кручения нити; j – максимальный угол отклонения рамки:

Угловую скорость w0, ..png" width="65" height="41 src=">.

Произведем интегрирование:

так как https://pandia.ru/text/78/409/images/image015_4.png" width="61" height="24 src=">, (5)

где q – заряд, прошедший через рамку за время t. Решая совместно уравнения (4) и (5), будем иметь . На опыте измеряют отклонение светового «зайчика» (отброс) не в углах, а в делениях шкалы n . Поскольку n и j пропорциональны друг другу, то окончательно можем записать

q = Bn , (6)

где В – коэффициент пропорциональности, который называется баллистической постоянной гальванометра. Баллистическая постоянная численно равна величине заряда, вызывающего отклонение «зайчика» на одно деление шкалы. Любой гальванометр может служить в качестве баллистического, если выполнено условие t << T . Итак, зная баллистическую постоянную гальванометра В , отброс n при разряде конденсатора и показания вольтметра U , в соответствии с формулами (1) и (6) находят емкость

Зарядные устройства" href="/text/category/zaryadnie_ustrojstva/" rel="bookmark">блок питания , Г – баллистический гальванометр, В – вольтметр, К – двойной переключатель. В положении I переключателя К конденсатор С заряжается; при переводе переключателя в положение II конденсатор разряжается через гальванометр. В этот момент измеряют максимальное отклонение «зайчика» n по шкале.

В первой части работы для определения баллистической постоянной в цепь (рис. 2) включают конденсатор известной емкости – эталон С э. Заряжая эталонный конденсатор до определенной разности потенциалов U , а затем разряжая его на гальванометр, измеряют отклонение «зайчика» n . Так как заряд на конденсаторе равен q = C эU , то по формуле (6) можно вычислить баллистическую постоянную

0 " style="border-collapse:collapse;border:none">

n, дел

q , мкКл

В , мкКл/дел

Вср , мкКл/дел

1. Вычисляют В для каждого U пo формуле (8), находят среднее значение В . Строят график зависимости q от n и убеждаются в том, что эта зависимость линейна.

2. Выводят формулу погрешности величины В по правилам расчета погрешности косвенных измерений. Вычисляют DB /В для: наименьшего значения U по данным табл. 1.

Определение емкостей неизвестных конденсаторов и их соединений

Таблица 2

n, дел

С , мкФ

Сср , мкФ

Конденсатор С 1

Конденсатор С 2

Параллельн. соед. С"

Последоват. соед. С""

3. Вычисляют емкости конденсаторов С 1, С 2, С" и С" по формуле (7).

4. Находят по формулам (2) и (3) теоретические значения емкостей конденсаторов С" теор и С" теор и сравнивают с опытными С" и С" .

5. Выводят формулу погрешности DС /С для емкости, найденной экспериментально (формула 7). Рассчитывают DС 1/С 1, DС 2/С 2, DС" /С" , DС" /С" для одного из значений U (DВ /В берут из п. 2). Определяют абсолютные погрешности и записывают окончательный результат для каждой емкости.

6. Находят разность значений емкости при параллельном (или последовательном) соединении, полученных экспериментально и теоретически. Сравнивают (С" С" теор) с погрешностью этой разности D( С" С" теор) и убеждаются в том, что С" С" теор £. D( С" С" теор). Значения С 1 С 2 и С" берут из табл. 2 при одной разности потенциалов U .

7. Дополнительное задание. Предлагается продумать и проверить экспериментально метод определения емкости конденсатора с использованием эталонного конденсатора, но без предварительного измерения баллистической постоянной.

ЛИТЕРАТУРА

1. , Курс физики. – М.: Высш. школа, 1999, § 16.2, 16.3.

Лабораторная работа № 6

ИЗМЕРЕНИЯ БАЛЛИСТИЧЕСКИМ ГАЛЬВАНОМЕТРОМ

Часть I

ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА
БАЛЛИСТИЧЕСКИМ МЕТОДОМ

ЦЕЛЬ РАБОТЫ:

  1. Приобрести практические навыки работы с баллистическим гальванометром. Овладеть методикой градуировки гальванометра.
  2. Овладеть методикой определения емкости конденсатора посредством баллистического гальванометра.

ПРИБОРЫ:

  1. Гальванометр М 17/11 1 .
  2. Набор конденсаторов.
  3. Ключи.
  4. Источник стабилизированного напряжения ИЭПП.

5. Вольтметр.

Измерение емкости конденсатора может быть произведено несколькими принципиально различными способами.

В данной работе в основе измерения емкостей лежит соотношение между зарядом конденсатора, его емкостью С и разностью потенциалов  . Для двух конденсаторов, заряженных до одной и той же разности потенциалов, получаем соотношение:

Следовательно, если значение С 1 известно, то, определив q 1 и q 2 , можно вычислить неизвестную емкость С 2 . Такой способ относительных измерений емкости положен в основу настоящей лабораторной работы. Наиболее ответственной частью задачи является измерение величины заряда q или сравнение зарядов двух конденсаторов. В настоящей работе сравнение зарядов двух конденсаторов выполняется баллистическим методом, изучению которого отводится центральное место.

ТЕОРИЯ БАЛЛИСТИЧЕСКОГО ГАЛЬВАНОМЕТРА

Гальванометр, предназначенный для измерения небольшого количества электричества, протекающего по цепи за промежуток времени, малый по сравнению с периодом собственных колебаний рамки гальванометра, называется баллистическим. Он представляет собой особую разновидность гальванометра магнитоэлектрической системы. От обычного зеркального баллистический гальванометр отличается большим моментом инерции подвижной системы. Увеличение момента инерции подвижной системы приводит к увеличению собственного периода ее колебаний. Кратковременный ток сообщает подвижной системе толчок (удар – отсюда и название баллистический), который служит причиной возникновения крутильных колебаний системы. Чтобы колебания носили характер свободных колебаний, необходимо, чтобы время действия тока на катушку было меньше собственного периода колебаний. Покажем, что при этом условии величина первого отклонения подвижной системы пропорциональна количеству прошедшего через катушку электричества .

За время протекания тока, которое очень мало, противодействующий момент закрученной нити можно считать равным нулю, т.к. система не успевает при большом моменте инерции сдвинуться с места. Следовательно, можно считать, что подвижная система в течение этого времени будет находиться только под действием вращающего момента М, обусловленного взаимодействием тока и магнитного поля постоянного магнита. Известно, что импульс момента силы равен изменению момента количества движения, т.е.:

М 1 dt = Id  (1),

где М 1 – мгновенное значение вращающего момента, действующего на подвижную систему гальванометра; I – момент инерции подвижной системы гальванометра относительно оси ее вращения; d - изменение угловой скорости системы за время dt.

На рамку, обтекаемую током и помещенную в магнитное поле, действует пара сил, вращающий момент которой М 1 определяется по формуле:

M 1 = B n i sin  S (2),

где В – индукция магнитного поля постоянного магнита,

n – число витков рамки,

S – площадь витка,

- угол между нормалью к плоскости рамки и направлением вектора.

i – мгновенная сила тока.

Так как линии индукции магнитного поля, в котором вращается рамка прибора данной системы, составляют с нормалью к плоскости рамки угол  = 90 о при всех положениях рамки, то вращающий момент М 1 не будет зависеть от положения рамки и будет иметь наибольшее значение, равное:

М 1 = B n S i (2  ).

Подставим М 1 из (2  ) в (1), получим:

B n S i d t = I d  (3).

Интегрируя обе части выражения (3), будем иметь:

B n S (4) ,

где t - время, в течение которого ток протекал через катушку.

Учитывая, что:

где q – количество электричества, протекающего за время t, будем иметь:

B n S q = I  t .

Отсюда получим:

где  t – угловая скорость, которую приобретает подвижная система к моменту прекращения тока.

Обозначив через К 1 (постоянную данного прибора), получим:

 t = k 1 q.

Кинетическая энергия, полученная системой в результате действия тока, м о жет быть найдена по формуле:

(5).

Подставив в (5)выражение  t = k 1 q, получим:

(5  а).

Вращение катушки будет продолжаться до тех пор, пока вся кинетическая энергия системы не перейдет в потенциальную энергию закрученной нити подвеса. В этот момент подвижная система остановится, повернувшись на угол  max .

Рассчитаем потенциальную энергию закрученной нити подвеса. Противодействующий момент М 2 , создаваемый нитью при закручивании на угол  , будет равен:

М 2 = к 2  . (6),

где к 2 – коэффициент, зависящий от упругих свойств нити подвеса.

Элементарная работа, затраченная на закручивание нити на угол  , равна:

dА = М 2 d  .

Полная работа, затраченная на закручивание нити на угол  max , с учётом

(6), равна:

(7).

Очевидно, (7) является выражением потенциальной энергии закрученной нити подвеса подвижной системы прибора.

Приравнивая (5  ) и (7), получим:

Откуда имеем:

Обозначив

(8),

получим:

q = К  max (9).

Таким образом, мы доказали, что величина первого угла отклонения подвижной системы прибора пропорциональна количеству электричества, прошедшего через гальванометр.

Нетрудно показать, что угловое смещение прибора (для малых углов),

(10),

где n – число делений, на которое отклонился световой указатель – «зайчик» по шкале гальванометра, D – расстояние от зеркала до шкалы.

Следовательно, выражение (9) можно переписать:

(11).

Величина называется баллистической постоянной гальванометра, она обычно выражается в кулонах или микрокулонах на деление шкалы (обычно на мм). С учетом К б выражение (11) примет вид:

q = K б n max (12).

Таким образом, величина наибольшего отклонения светового указателя по шкале (отброс) пропорциональна количеству электричества, прошедшего через гальванометр.

Выражение (12) не совсем точное, т.к. при выводе его не учитывалось, что кинетическая энергия, полученная от импульса тока, частично тратится на преодоление сопротивления воздуха. Однако практически это соотношение дает хорошие результаты.

Чтобы быстрее успокоить крутильные колебания подвижной системы, часто параллельно обмотке катушки, вводят небольшое сопротивление и ключ. Если ключ замкнуть в тот момент, когда световой указатель проходит через нуль шкалы, то колебания прекратятся. Это происходит потому, что в катушке, вращающейся в магнитном поле постоянного магнита, возникает ЭДС индукции. При замыкании ключа возникает индукционный ток, который, согласно правилу Ленца, будет противодействовать движению катушки.

Во многих гальванометрах параллельно подвижной системе подключают сопротивление без ключа (шунт). Это сопротивление рассчитано так, чтобы сделать движение подвижной системы апериодическим. Такое сопротивление называется критическим, оно порядка нескольких тысяч омов, подключение критического сопротивления понижает чувствительность гальванометра.

МЕТОДИКА ИЗМЕРЕНИЙ

I . Определение баллистической постоянной гальванометра

Из выражения (12) имеем:

К б = (13),

где К б – величина баллистической постоянной,

q – величина заряда, протекающего через гальванометр,

n max – наибольшее отклонение светового указателя по шкале.

1.Для определения К б собрать схему по рис. 1,

Рис.1.

где Г – баллистический гальванометр;

R ш – шунт гальванометра;

К 0 – ключ, отключающий гальванометр;

К – ключ, закорачивающий гальванометр;

К 1 – двухпозиционный ключ (рубильник);

V – вольтметр;

С - конденсатор (сначала с известной емкостью, затем - неизвестной);

Источник регулируемого напряжения ИЭПП.

Согласно инструкции для пользования гальванометром и отсчетным горизонтальным приспособлением, подготовить гальванометр к работе и установить световой указатель на нуль шкалы. Ключ К разомкнуть, ключ К 0 замкнуть.

Передвигая линзу осветителя, добиться четких очертаний «зайчика».

2. Рубильник К 1 замкнуть на клеммы 1 и 2, подать с делителя ИЭПП на конденсатор С 0 известной емкости (1мкФ) напряжение (разность потенциалов) U = 0,2 В – 0,5 В.

3. Перекинуть рубильник К 1 на клеммы 5 и 6, разрядить конденсатор через гальванометр. Заметить крайнее значение шкалы, до которого доходит световой указатель при первом колебании (первый отброс). Если этот отброс находится в пределах шкалы, то можно приступать к измерениям. Если зайчик уходит за пределы шкалы, уменьшить напряжение.

Отсчитав n max (значение первого отброса), для успокоения гальванометра замкнуть ключ К, тогда «зайчик» возвращается к нулевому делению шкалы. Когда «зайчик» установится на нуле шкалы, разомкнуть ключ К.

4. Вычислив q = C 0 U и измерив по шкале величину первого отброса n max , по формуле (13  ) вычислить баллистическую постоянную:

(13  ).

Определение n max произвести не менее пяти раз, записывая в таблицу каждый раз величину наибольшего отброса “зайчика” и повторяя операции согласно пунктам 1, 2. Следить при этом, чтобы напряжение на конденсатор подавалось одно и тоже. Результаты измерений и расчетов внести в табл. I .Найти среднее значение n max и по нему вычислить К б .

Погрешности  K б и определить по формулам погрешностей, полученным из формулы 13  .  n max определить как среднюю квадратичную погрешность среднего арифметического; U – погрешность прибора, определяемая исходя из класса точности прибора;  С 0 – погрешность, определяемая по относительной погрешности, указанной в маркировке конденсатора.

Вывод формул погрешностей и расчеты представить в отчете.

5. Сравнить результаты измерения К б . с паспортными данными гальванометра, объяснить результаты сравнения.

Таблица I

n max

(дел)

 n max

(дел.)

(В)

 U

(В)

( )

 C 0

( )

K б

(Кл/

дел.)

 K б

(Кл/

дел.)

ср.

II .Измерение емкости конденсатора и проверка формул для
подсчета емкости батарей конденсаторов

1.Заменить конденсатор известной емкости первым испытуемым конденсатором неизвестной емкости С 1 . Установить на выходе ИЭПП напряжение U 1 = 1 В-2 В, ключ К 1 замкнуть на клеммы 1 и 2. Затем перекинуть ключ К 1 на клеммы 5 и 6, разряжая конденсатор через гальванометр. Записать величину отброса «зайчика» на шкале. Замыкая ключ К, когда «зайчик» проходит через нуль шкалы, успокоить катушку гальванометра. Затем разомкнуть ключ К.

2.Заменить конденсатор С 1 другим испытуемым конденсатором неизвестной емкости С 2 , повторить с ним все операции пункта 1,подав напряжение на конденсатор U 2 = 2В-3В.

3.Опыты по определению n mах произвести для каждого конденсатора не менее 5 раз, получить среднее значение n mах .

4.Так как, а, то неизвестную емкость найти по формуле:

(14),

где С – определяемая емкость, n mах – среднее значение отбросов “зайчика” на шкале, U – постоянное напряжение для каждого конденсатора.

Погрешности  С и определить по формулам погрешностей, полученным из формулы (14). Результаты измерений и расчетов внести в табл. II и подобную ей табл. III.

Таблица II. (III)

n max

(дел.)

 n max

(дел.)

(В)

 U

(В)

(Ф)

 C

(Ф)

ср.

5.Измерить емкость батарей, составленных из конденсаторов С 1 и С 2 при их последовательном и параллельном соединениях, проделав все операции, содержащиеся в пунктах 1, 2, 3, 4. Результаты измерений и расчетов внести в табл. IV для последовательного соединения, в табл. V – для параллельного.

Таблица IV. (V).

n max

(дел.)

 n max

(дел.)

(В)

 U

(В)

(Ф)

(Ф)

(Ф)

ср.

Сравнить результаты измерений емкости при последовательном и параллельном соединении конденсаторов с результатами вычислений этих емкостей по формулам последовательного и параллельного соединения конденсаторов.

После выполнения работы ключ К 0 оставить разомкнутым

КОНТРОЛЬНЫЕ ВОПРОСЫ К I ЧАСТИ РАБОТЫ.

1. Охарактеризуйте метод, использованный в работе, для определения емкости конденсатора.

2.В каких единицах измеряется электроемкость в СИ и СГС?. Дайте определения этих единиц и выведете соотношение между ними.

3.От каких величин зависит емкость плоского, сферического, цилиндрического конденсатора? Знать формулы емкости этих конденсаторов.

4.Что понимают под емкостью проводника, конденсатора?

5.Объясните устройство и принцип действия баллистического гальванометра.

6.Каков физический смысл баллистической постоянной?

Часть II

ИЗМЕРЕНИЕ ПОТОКА МАГНИТНОЙ ИНДУКЦИИ

БАЛЛИСТИЧЕСКИМ МЕТОДОМ

ЦЕЛЬ РАБОТЫ:

1) Овладеть методикой измерения величины потока магнитной индукции и индукции баллистическим методом.

  1. Определить постоянную гальванометра по магнитному потоку.

Определить индукцию магнитного поля в измерительной катушке при внесении в нее полосового магнита.

ПРИБОРЫ:

1.гальванометр М 17/11,

2.дроссельная катушка,

3.магазин Р 33,

4.полосовой магнит,

5.ключи

ТЕОРИЯ

Одним из основных методов определения магнитных характеристик ферромагнитных материалов в постоянных магнитных полях является баллистический. Впервые он был применен А.Г. Столетовым для измерения намагничивания железа. Баллистический метод основан на измерении количества электричества, которое возникает в измерительной катушке, охватывающий магнитный образец, в результате быстрого изменения магнитного потока через эту катушку. Это же количество электричества проходит и через рамку гальванометра.

В первой части работы была определена баллистическая постоянная гальванометра К б . Ее значением и воспользуемся для определения количества электричества, проходящего в цепи гальванометра при изменении магнитного потока через измерительную катушку. Изменение магнитного потока произведем введением (или выведением) полосового магнита в измерительную катушку.

При изменении магнитного потока через измерительную катушку в ней возникает электродвижущая сила индукции

(1),

где N - число витков измерительной катушки.

В цепи гальванометра пойдет ток

(2),

где R - общее сопротивление катушки и цепи гальванометра.

Если поток изменится на величину  , через рамку гальванометра про й дет количество электричества

(3).

Это количество электричества измерим по отклонению n указателя гал ь ван о метра по шкале

q = К б  n (4).

Тогда поток магнитной индукции определим по формуле (5)

(5).

Зная величину площади, охватываемой витками измерительной катушки, найдем величину вектора магнитной индукции

(6),

где В n =В cos  ,  - угол между нормалью к плоскости витка и направлением вектора магнитной индукции.

МЕТОДИКА ИЗМЕРЕНИЙ

1.Собрать цепь по схеме, изображенной на рис.2,

Рис.2

где Г – гальванометр, сопротивление рамки которого R 0г =300 Ом (паспортные данные);

R ш – шунт, сопротивление которого в I и II части работы одинаковое, равное 650 Ом; (измерено омметром М 371);

R кр – критическое сопротивление для данного гальванометра и данной цепи, равное 400 Ом (набрано на магазине сопротивлений Р-33);

L – измерительная катушка, число витков которой N=15, омическое сопротивление R L =3,2 Ом (определено омметром М-371), площадь витка S=100 см 2 ;

Назначение ключей К 0, К, К 1 указано в I части работы.

  1. Замкнуть ключ К 0 . Внутрь дроссельной катушки ввести вертикально полосовой магнит. Замкнуть ключ К 1 на клеммы 1 - 2. Отметить начальное положение светового указателя n 1 .

Резко вынуть магнит из катушки. Зарегистрировать новое положение указателя n 2 , найти n=n 2 -n 1 . Произвести измерения 5 раз, найти n ср. . Погрешность в определении n ср найти как среднее квадратичное отклонение.

По формуле (5) найти изменение магнитного потока, пронизывающего измерительную катушку, при введении (или выведении) полосового магнита. При этом нужно иметь в виду, что R в формуле (5) - полное сопротивление цепи, состоящей из измерительной катушки, рамки гальванометра, шунта и критического сопротивления. По формуле (6) найти величину вектора магнитной индукции.

Погрешность в определении магнитного потока найти по формулам погрешностей, полученным из формул (5) и (6).

  1. Определить постоянную гальванометра по магнитному потоку К ф . Как видно из (5),

(6).

Погрешность в определении постоянной гальванометра по магнитному потоку определить по формуле погрешности, полученной из формулы (6).

  1. Результаты измерений и расчетов внести в табл. 6.

Сравнить результаты измерения К Ф. с паспортными данными гальванометра, объяснить результаты сравнения.

КОНТРОЛЬНЫЕ ВОПРОСЫ КО II ЧАСТИ РАБОТЫ.

  1. Охарактеризуйте метод, использованный в работе, для определения потока магнитной индукции.
  2. Влияет ли на показания прибора изменение положения магнита в катушке (северным полюсом вниз или вверх)?
  3. Влияет ли на показания прибора скорость движения магнита относительно катушки? Почему?
  4. В паспорте к гальванометру М 17/11 указаны значения постоянных прибора (К б , К ф и т.д.) для расстояния между осветителем и зеркалом прибора, равного 1м.

Каково это расстояние в нашей установке? Как влияет величина этого рассто я ния на значения постоянных прибора?

Таблица 6


п/п

 n

 R

К б

 К б

 Ф

К ф

 К ф

 S

В n

 B n

мм

мм

Ом

Ом

Кл/мм

Кл/мм

Вб

Вб

Вб/мм

Вб/мм

м 2

м 2

Тл

Тл

ср.

Приложение

Устройство гальванометра магнитоэлектрической системы

Гальванометры – приборы, служащие для измерения слабых электрических токов, подразделяются по своей конструкции на две основные группы: 1) с подвижной катушкой, обтекаемой током и вращающейся в поле неподвижного магнита или электромагнита; 2) с подвижным магнитом и неподвижной катушкой.

Для измерения силы тока, как в тех, так и в других приборах, используется вращение подвижной системы, отклоняющейся от некоторого положения равновесия под влиянием взаимодействия тока и магнита. При точных измерениях применяются исключительно гальванометры первого типа.

Подвижная система такого гальванометра представляет собой в большинстве случаев четырехугольную рамку, составленную из плотно уложенных и склеенных изолирующим лаком четырехугольных витков изолированной тонкой проволоки сечением в несколько сотых миллиметра. Эффективное поперечное сечение такой катушки, пронизываемое линиями сил магнитного поля, составляет nS, где n – число витков рамки, а S – площадь сечения отдельного прямоугольного витка проволоки. Число витков в такой катушке бывает от нескольких десятков до сотни. Нить Е с укрепленным на ней легким зеркальцем М (рис. 3) служит подвесом для рамки С. Рамка может свободно вращаться в зазоре, образуемом двумя полюсами постоянного магнита и цилиндром J из мягкого железа, укрепленных на пластинке Р из немагнитного материала. В этом случае, как показано пунктиром в нижней части рисунка, магнитное поле в воздушном промежутке почти радиально (на верхней части рисунка один из полюсов магнита частично удален).

Нитью подвеса служит тонкая металлическая (платиновая) проволока или бронзовая ленточка сечением в несколько микрон или тонкая кварцевая нить, иногда платинированная по поверхности. Вторым подводом тока к катушке служит обычно металлическая серебряная или золотая ленточка толщиной в несколько десятых микрона. В гальванометрах с кварцевым подвесом обычно оба подвода тока к рамке выполняются в виде таких ленточек, соединенных с обмоткой рамки (катушки) гальванометра в нижней ее части. Подводы тока к подвижной системе гальванометра не должны оказывать упругого сопротивления вращению подвижной системы. Таким образом, моментом упругих сил, действующим на рамку, является только крутящий момент нити подвеса.

Рис.3.

Перед началом работы гальванометр должен быть правильно установлен, что достигается вращением трех установочных винтов, на которые опирается корпус прибора. Это значит, что подвижная система гальванометра, удерживаемая в фиксированном положении до начала работы специальным приспособлением (арретиром), должна после освобождения арретира свободно двигаться между полюсами магнита, не касаясь их при вращении. Узость зазора между полюсами магнита и центральным цилиндром требует весьма точной установки прибора.

Для правильной установки некоторые системы гальванометров снабжены уровнем, при помощи которого прибор приводится в правильное положение. В других системах гальванометров в корпусе прибора установлено специальное наклеенное зеркальце, которое облегчает наблюдения положения рамки относительно полюсов магнита.

Приборы первого типа устанавливаются по уровню при арретированной подвижной системе. Приборы второго типа устанавливаются при освобожденной подвижной системе. Арретир приводится в движение специальным рычажком или головкой винта, выведенной где-либо из гальванометра и снабженной надписью.

Освобождение и закрепление подвижной системы гальванометра перед работой прибора (или по окончании ее) следует производить с большой осторожностью, так как толчки подвижной системы гальванометра, подхватываемой вилкой арретира, передаются непосредственно тонкой нити подвеса. Студентам выполнять самостоятельно эту операцию в практикуме не рекомендуется, они должны обращаться за помощью к лаборантам практикума и воспользоваться возможностью проследить за выполнением этих операций опытными лицами.

Верхний конец нити подвеса закреплен во вращающейся головке (обозначенной на корпусе прибора надписью «корректор нуля»), выведенной на верхнюю часть корпуса гальванометра. Вращением этой головки можно поворачивать подвижную систему гальванометра для установки ее в нулевое положение между полюсами магнита. В нулевом положении плоскость витков подвижной системы подвеса устанавливается приблизительно параллельно линии аb (рис.3). Операция поворота рамки (катушки) гальванометра требует таких же предосторожностей, что и освобождение арретира прибора. Необходимо при этом иметь в виду, что при вращении головки корректора нуля рамка следует за вращением головки с запозданием, так как передача крутящего момента к рамке осуществляется через нить подвеса. Поэтому, повернув корректор нуля на небольшой угол, следует всякий раз выждать, пока подвижная система прибора установится в новое положение. Только таким прерывистым вращением корректора нуля можно привести подвижную систему в нужное положение между полюсами магнита. В практикуме эти операции производятся также не студентами, а лаборантами.

Измерение силы тока основано на наблюдении углов поворота рамки С. При протекании через обмотку рамки тока последняя испытывает вращающий момент сил, действующих на ток в магнитном поле. При этом рамка стремится расположиться так, чтобы магнитный момент протекающего по ней тока был направлен вдоль внешнего магнитного поля. В итоге рамка поворачивается на некоторый угол  . Режимы движения рамки гальванометра следующие:

  1. Апериодический режим. Это такой режим, при котором рамка гальванометра под действием тока плавно подходит к положению равновесия, не переходя через него.
  2. Периодический режим . Движение рамки в этом случае происходит так, что двигаясь к положению равновесия, она переходит через него и занимает его после нескольких колебаний.
  3. Критический режим . Это такой режим, при котором рамка гальванометра под действием тока подходит к положению равновесия за кратчайшее время. Этот режим наиболее выгоден для работы. Параметры элементов схемы, необходимые для реализации критического режима, приведены в паспорте гальванометра.

1 Устройство гальванометра описано в «Приложении» к лабораторной работе. Параметры М 17/11 указаны в инструкции к прибору, с которой студент должен ознакомиться.







2024 © phonebdmoscow.ru.